Koolance CPU-370 Performance Preview

Koolance Logo

Thermal Testing Methodology/Specification

Methodology

I use Dallas One Wire DS18B20 temperature probes at various points through my watercooling loop and at the air intake to measure temperatures.  I’ve isolated the radiators so that the flowrate through them never changes; for this test, however, it’s kind of moot as I’m only using a single pump setting: DDC3.25 with a Koolance COV-RP400. For these tests, I’ll be performing seven mounts with Spire SilverGrease SP-457.

Specification

  • The processor I’m using for this test is my D0 i7 930. I’m running it at 19×200 (4000MHz) at 1.45V loaded on an MSI X58 Big Bang with HyperThreading enabled. It is unlapped. I’m running 2GB of Kingston DDR3 1600MHz.  The MOSFETs, IOH, and Southbridge sinks are left stock. The video card is a passive ATi HD4350 running in the bottom 16x slot. The board is on an HSPC Top Deck Tech Station Large with the bottom deck filled with an Antec 850W PSU, Zippy 700W PSU, and HDD drive.
  • The watercooling loop I’m using is very untraditional, but allows me to test the way I want to test.
    • It consists of a two MCR320s, each with three pairs of Yate Loon D12SH-12 fans in push/pull on each radiator at 5V. I use a Koolance PMP-300 on the radiator and MOSFET subloop.
    • For the block subloop, I use a Laing D5, two Laing DDC3.2s, and a Laing DDC3.25 for the pumps as well as a trio of Koolance FM17 flowmeters.
    • I use a shared Koolance reservoir between the two subloops.
  • I do a seven mount test for each block configuration, each with their own TIM application and full cleaning between. I discard the data from the two worst mounts–I present it to the reader, but my final analysis and numbers are all based on the five best mounts. As a reviewer, I feel it is my duty to present the reader with performance numbers of a product that represent what its typical performance is. Often times the worst mounts are somewhat anomalous; by performing seven mounts and focusing on the better five mounts (in terms of thermal performance), I feel I am best representing the expected performance of a product. Additionally, I also present the best mount from each block in the comparison since I feel that is a good representation of what to expect in the best case scenario of each block.
  • I have 28 temperature probes in use: 24 Dallas DS18B20 Digital one-wire sensors and 4 Intel DTS sensors in the processor.
  • For temperature logging, I use OCCT v3.1.0’s internal CPU polling that is performed every second on all four DTS sensors and is automatically output to .CSV files. I also use OCCT for loading the CPU. For air intake and various water temperatures temperatures, I use Crystalfontz 633 WinTest b1.9 to log the Dallas temp probe data on my Crystalfontz 633. I also use WinTest b1.9 to log pump RPM.
  • For processor loading, I find OCCT v3.1.0 to be extremely competent. With the Small Data Set setting, it provides a constant 100% load (so long as WinTest b1.9’s packet debugger is fully disabled) and is extraordinarily consistent. It allows me to, in one button push, start both the loading and the logging simultaneously, which helps. I immediately also start to log the Crystalfontz data via WinTest b1.9. I run a 2 hour and 35 minute program, the first minute is idle, then I have two and a half hours of load, and then 4 minutes of idle. The first 30 minutes of load data is considered warm-up and the last 120 are used for results.
  • I use Spire SilverGrease SP-457/25g as my TIM. This TIM is extremely contact sensitive and has little curing.  Without the full review, the use of only Spire SilverGrease SP-457 without Indigo Xtreme will only show part of the performance picture.
  • I have found that each individual CPU has a unique temperature probe response curve, relative to water temperature. This i7 930 D0 has temperature sensors that scale linearly with water temperature, where the reported CPU temperature increased 1C for every ~.88C increase in water temperature. I account for this before presenting the data. Accounting for this is critical, as even a 2C variation in water temperature would cause an error of roughly a quarter of a degree.
Pages: 1 2 3 4 5 6

Comments

Posted On
Apr 19, 2011
Posted By
claydough

Nice review.. any plans for installation videos?
coverage of mounting with indigo extreme’s unconventional methods would make a great companion combined with coverage of the koolance mounting system.
The full coverage removal/installation videos have me returning to the skinnee pages often!

Posted On
Apr 19, 2011
Posted By
Eric (Vapor) Hassett

We’ve talked about installation videos amongst ourselves but as it is now, there are no immediate plans for the CPU blocks.

I personally feel a photo shoot is better as a guide/walkthrough for block installation because you progress through the pictures at your own pace rather than having to keep pausing/starting/rewinding.

One disadvantage is you don’t get to see how easy/hard/time consuming certain steps are….like threaded the four nuts down on the threaded posts for the EK mounting system can take awhile. Getting the hex couplers and the backplate screws to thread (for the Aqua Computer kyros XT/HF) can also be an extremely hard step, which is hard to see with pictures. But in those cases I get to use words to convey how difficult it is.

The last issue is the actual difficulty in recording the video–I don’t have a way to record video right now.

Leave a Reply

You must be logged in to post a comment.

Login