Asus Rampage III Extreme Board Blocks

Asus ROG Logo

Bitspower AIX58NSE3

Bitspower RIIIE Block Bitspower RIIIE Block box contents Bitspower RIIIE Block - quick shot of the business end of the block

When you open the Bitspower box you are just overloaded with baggies full of bits, it is a little overwhelming. Wrapped up in those bags is the mounting hardware, mosfet backplate, replacement o-rings, thermal pads, and 1g of AS Matrix. But wait there is more, two matte black rotary elbows (green oring and all), tube bridge with connectors, instructions and a Bitspower case badge, yeah and the block too. See, overwhelming. Once you finally overcome the accessory overload the two-piece block catches your eye, and how that tube bridge comes into play. Listed dimensions for the Mosfet block are 155x38x15.7mm with the NB/SB (actually, IOH/ICH) block measuring in at 151×147.5×15.5 (LxWxH). Yes, the IOH/ICH piece is pretty massive and contacts ten different chips besides the IOH/ICH chips. The mosfet block is more the norm, covering just the two VRM locations.

No picture of the Bitspower block all tubed with the trick connector just yet, you will get your view of that later in the article. On that connector, the two closest barb locations will be used, this ensures clearance for your CPU block of choice.

Danger Den CHP-100

Danger Den RIIIE Block Danger Den RIIIE Block box contents Danger Den RIIIE Block - quick shot of the barb side Danger Den RIIIE Block - quick shot of the working side

Danger Den comes into the group here as probably the most unique approach, the block and heat-pipe hybrid. We have seen motherboard manufacturers release a similar approach, but Danger Den goes much further. With the DD block, only the SB (ICH) relies on a heat pipe for capturing the heat and moving it back to the water portion covering the NB (IOH) and VRM’s. Additionally, the Danger Den block is primarily Delrin with working copper only on the contact points of the board, which greatly reduces the weight of the block. The question looming in your mind as to how this impacts cooling ability will be answered later, but in testing the reduced weight was nice when going through the mount process four times.

Sticking with the uniqueness, Danger Den is the only one of the group here to scrap the stock ROG badge location and integrate and LED into the block, which illuminates the ROG text over the mosfets. In testing and photos, I did not bother moving the ROG badge so you will have to use your imagination. Plus, I am not sure how many folks actually reuse the badge anyhow.

EK FB-RE3 Nickel

With the introduction of X58 brought the Full Board block approach versus the former where individual blocks were required for the mosfets, NB and SB. EK was one of the companies to make all the individual blocks, this meant a lot of confusion for us in trying to outfit our boards, and do not forget about those tricky tube runs. This is where the full board blocks have really simplified getting your board wet.

With my little full board/individual block editorial out of the way, the EK Rampage III Extreme block is not one continuous piece of copper, but two with a water channel integrated in between the VRM’s and IOH/ICH sections. The red piece of acrylic makes up the bridge portion, while EK leaves some room for the ROG badge as well. Your barb ports on the EK block are above the mosfets near the EPS 8-pin and over the IOH, water does flow over the ICH as well. In fact, the water channel is quite lengthy overall providing quite a bit of surface area for heat transfer. We will see later on how well all this surface does for cooling performance.

EK RIIIE Block EK RIIIE Block box contents EK RIIIE Block - quick shot of the barb side EK RIIIE Block - quick shot of the working side

Koolance MB-ASR3E

Since you have already read the little full board editorial, I will spare you covering that again. However, Koolance is another company that produced individual blocks and tried the balance the universal and board specific blocks in their product line-up. Thanks once again to X58 and the full board blocks, Koolance has simplified their line-up and produces board blocks for specific motherboards while still keeping some universal blocks available for those boards where full board is not possible or the board is not popular enough for a FB to be produced.

The Koolance design for the Rampage III Extreme contains three separate copper blocks linked together with a Delrin water channel. Speaking of the Delrin water channel, the Koolance design is a multi-layered approach, with the copper being the first layer, a polished stainless steel cover and the Delrin water channel sandwiched in the middle. The spot for the ROG badge is present on the block as well, but I am still puzzled as to how the LED wires from the badge would snake through the block and connect up to the board or maybe it does not snake through the block at all. Barb port wise, you have a port up at the EPS 8-pin, but your other port is down below the ICH. One of the photos above shows the slot compatibility with the barb port locations being way down there. With the second barb port being that low on the board, this may simplify the tube routing in your case, something to ponder before forming your opinion on the location of that barb port.

Koolance RIIIE Block Koolance RIIIE Block - box contents Koolance RIIIE Block - top side of the block Koolance RIIIE Block - contact side of the block

Internals

You have probably noticed there are no internal shots thus far. The reasoning here is that I was not about to take apart the blocks before completing testing, the reassembly process is a laborious one and I did not want to cause any extra headaches for myself through testing. With that said, testing is complete, so let’s take a closer look at just the internals. However, Danger Den’s block is permanently sealed and my only means of getting a look at the internals is a Dremel or a Solidworks drawing… so please accept the Solidworks image from Danger Den since I just could not bring myself to sacrifice a block for one photo.

Bitspower block internals Danger block internals render EK block internals Koolance block internals

For the most part, the blocks all take a similar approach putting a flat surface over the VRM and then active cooling over the IOH. The group is then split when it comes to the ICH with Bitspower and Koolance putting active cooling over the chip. While EK goes similar to the mosfets with a flat surface and Danger Den breaking the norm and running a heat pipe from the IOH down to ICH. I give credit to Danger Den for stepping outside of the typical box, but we will have to wait until the thermal results to see if the praise is short lived. You may notice the water still on the blocks, they did not have much time to sit and dry after pressure drop testing and once I saw the photos I thought it added a little something to the photos. In addition, the Koolance and Bitspower blocks show some crazy colors in the water path, the photo editing made that much more visible than it actually was, even still it is nothing to be concerned with.

Pages: 1 2 3 4 5 6

Leave a Reply

You must be logged in to post a comment.

Login